
Page 1 of 11

Instructional Framework
Software and App Design
11.0202.00
This Instructional Framework identifies, explains, and expands the content of the standards/measurement criteria, and, as well, guides the
development of multiple-choice items for the Technical Skills Assessment. This document corresponds with the Technical Standards endorsed on
January 25, 2018.

Domain 1: Programming
Instructional Time: 50-60%
STANDARD 4.0 UTILIZE PRIMITIVE DATA TYPES AND STRINGS IN WRITING PROGRAMS

4.1 Declare numeric Boolean, character, string variables, and float and
double

• Various data types
• Usage of the data types
• Storage size and value ranges of the data types

4.2 Choose the appropriate data type for a given situation • Data type requirement

4.3 Identify the correct syntax and usage for constants and variables in
a program

• Naming conventions
• Difference and usage

4.4 Identify the correct syntax and safe functions for operations on
strings, including length, substring, and concatenation

• String operations
• Existing string functions usage/limitations

4.5 Explain complications of storing and manipulating data (i.e., the Big-
O notation for analyzing storage and efficiency concerns, etc.)

• Memory usage
• Complexity algorithms

4.6 Research industry relevant programming languages (i.e., Java,
JavaScript, Python, etc.)

• High/Low level languages - basic information
• Basics of industry relevant languages (i.e., Java, Python, etc.)

STANDARD 5.0 PERFORM BASIC COMPUTER MATHEMATICS IN INFORMATION TECHNOLOGY

5.1 Apply basic mathematics to hardware (e.g., bits, bytes, kilobytes,
megabytes, gigabytes, and terabytes)

• Various units of digital storage

5.2 Use binary to decimal, decimal to hexadecimal, hexadecimal to
decimal, binary to hexadecimal, and binary to hexadecimal conversions
to solve hardware and software problems

• Knowledge of various number systems
• Number system conversion

Page 2 of 11

5.3 Identify and correctly use arithmetic operations applying the order of
operations (precedence) with respect to programming

• Understand Arithmetic operators (+, -, *, /, %)
• Order of operations (PEMDAS/BODMAS acronyms)

5.4 Interpret and construct mathematical formulas • Problem understanding and equation formation

5.5 Identify correct and problematic uses of integers, floating-point
numbers, and fixed-point numbers in arithmetic

• Difference between numeric data types
• Data type usage/limitations

STANDARD 6.0 UTILIZE CONDITIONAL STRUCTURES IN WRITING PROGRAMS

6.1 Use the correct syntax for decision statements (e.g., if/else, if, and
switch case)

• Controlling program flow based on various conditions
• Usage of if/if-else/switch case statements

6.2 Compare values using relational operators (e.g., =, <, >, < =, > =,
and not equal)

• Various conditional operators and their results
• Difference between inclusive/exclusive limits (> and > =)

6.3 Evaluate Boolean expressions (e.g., AND, OR, NOT, NOR, and
XOR)

• Various Boolean expression evaluation
• De Morgan’s Laws
• Short-circuit (McCarthy) evaluation

6.4 Use the correct nesting for decision structures • Nested if/if-else
• Hierarchy of conditional check

STANDARD 7.0 UTILIZE ITERATIVE STRUCTURES IN WRITING PROGRAMS

7.1 Identify various types of iteration structure (e.g., while, for, for-each,
and recursion)

• Various types of iterations
• Usage of iterative types

7.2 Identify how loops are controlled (variable conditions and exits) • Break keyword usage
• Control variable
• Increment/Decrement control variable

7.3 Use the correct syntax for nested loops • Construct nested loop
• Control the inner loops through the outer loop

7.4 Compute the values of variables involved with nested loops • Code tracing
• Working with the iteration variables and how they control each

other’s value

Page 3 of 11

STANDARD 8.0 UTILIZE BASIC DATA STRUCTURES IN WRITING PROGRAMS

8.1 Demonstrate basic uses of arrays including initialization, storage,
and retrieval of values

• Array
• Types of arrays (i.e., Integer, String, etc.)
• Indices of array elements

8.2 Distinguish between arrays and hash maps (associative arrays) • Array values vs Hash map has key and values

8.3 Identify techniques for declaring, initializing, and modifying user-
defined data types

• Appending arrays and ArrayList
• Class type ArrayList

8.4 Search and sort data in an array • Search and sort algorithms (i.e., Bubble, Linear, Binary, etc.)

8.5 Create and use two-dimensional arrays • Need/Use of 2D arrays
• Concept of rows and columns
• Format and access the elements of 2D array (a[][])

8.6 Describe the efficiency of different sorting algorithms (e.g., bubble,
insertion, and merge)

• Processing time/memory usage with different algorithms
• Best- and worst-case scenarios

STANDARD 14.0 UTILIZE AND CREATE COMMUNITY RESOURCES

14.1 Use standard library functions • Download and import standard libraries relevant to the
programming language in use

14.2 Find and use third party libraries (e.g., web-based and package
managers)

• Various free/paid reusable components available for the said
language (i.e., SDK in Java, etc.)

14.3 Explain and interact with an Application Program Interface (API) • Various software components interact with each other in
programming

STANDARD 15.0 USE VERSION CONTROL SYSTEMS

15.1 Identify the purpose of version control systems (e.g., Git and
Mercurial)

• Version control
• Tracking needs

15.2 Create a new repository • Central location for data/program storage
• Location option (i.e., local/central/cloud-based, etc.)

15.3 Add, push, and pull source code from repository • Add to repository
• Push and pull source code

Page 4 of 11

15.4 Explain branching and its uses • Duplicate a program code for revision control purpose
• Parallel modifications between various team members

15.5 Restore previous versions of code from the repository • Use of ‘Reset’ and other options available to restore previous
version

• Pros/Cons of backing up

STANDARD 18.0 EMPLOY OBJECT-ORIENTED PROGRAMMING TECHNIQUES

18.1 Make a distinction between an object and a class • Concept of Object-oriented programming (OOP)
• Object (i.e., Dog is an object of class Animal, etc.)

18.2 Differentiate among inheritance, composition, and class
relationships

• Is-a and has-a relationships
• Inherited/Reused by a child class from parent class

18.3 Instantiate objects from existing classes • Syntax of object declaration and initialization

18.4 Read the state of an object by invoking accessor methods • Getter methods [e.g., getStudentName().]

18.5 Change the state of an object by invoking a modifier method • Setter methods [e.g., setStudentName(“name”)]

18.6 Determine the requirements for constructing new objects by
reading the documentation

• Single or multiple objects for a single class
• (i.e., multiple objects for a database creation, etc.)

18.7 Create a user-defined class • User defined data type and methods

18.8 Create a subclass of an existing class • Subclass to a superclass
• Subclass specific data/Methods only and reuse superclass

methods

18.9 Identify the use of an abstract class as opposed to an interface • Interface vs Abstract class
• Multiple inheritance

18.10 Explain the object-oriented concepts of polymorphism,
inheritance, and encapsulation

• Reuse of same method names for different behavior/actions
• Subclasses to inherit the existing code/methods
• Accessor types (public/private/protected) to secure the data

Page 5 of 11

Domain 2: App Design
Instructional Time: 10-20%
STANDARD 11.0 DEMONSTRATE PROGRAM ANALYSIS AND DESIGN

11.1 Implement the steps in the System Development Life Cycle
(SDLC) (e.g., planning, analysis, design, development, testing,
implementation, and maintenance)

• SDLC model (i.e., Waterfall, Spiral, Agile, etc.)
• SDLC model choices
• Stages of the life cycle
• (requirements/documents/expectations/duration)

11.2 Develop program requirements/specifications and a testing plan
(e.g., user stories, automated testing, and test procedures)

• Client requirements
• Creating requirement documents
• Test cases needed for the testing phase

11.3 Apply pseudocode or graphical representations to plan the
structure of a program or module (e.g., flowcharting, white boarding,
and UML)

• Pseudocode/flowcharts/algorithms
• Collaborative planning (i.e., flowcharting/white boarding, or

other unified modeling language, etc.)

11.4 Create and implement basic algorithms • Good algorithm features
• Inputs/process/outputs/finite flow/performance of an algorithm
• Algorithm into programming language

STANDARD 12.0 DEVELOP A PROGRAM

12.1 Use a program editor to enter and modify code • IDE, MIT App Inventor, Greenfoot, TextPad, BlueJ, Eclipse

12.2 Identify correct input/output statements • Programming language syntaxes
• Case sensitive languages errors

12.3 Choose the correct method of assigning input to variables
including data sanitization

• Appropriate data types to variable assignment(s)
• Conditional checks
• Exception handling

12.4 Choose the correct method of outputting data with formatting and
escaping

• Language specific output statements and escape characters
• Usage formatting data

12.5 Differentiate between interpreted and compiled code (e.g., steps
necessary to run executable code)

• Interpreted code vs Compiled code
• Interpreted code/User language
• Compiled code/Machine language
• Byte code/OOP languages

Page 6 of 11

12.6 Identify the purpose of a build system (e.g., make, rake, ant,
maven, SCons, and grunt)

• Compile and link source code into binary code with build tools
o Make
o Rake
o Ant
o Maven
o SCons
o Grunt

12.7 Apply industry standards in documentation (e.g., self-documenting
code; function-level, program-level, and user-level documentation)

• Document (with the code, within the code)
• Comments in code - third party understanding
• Documentation levels (i.e., Self, Program, Function, User, etc.)

12.8 Name identifiers and formatting code by applying recognized
conventions

• Naming conventions and practices in programming
(camelCase)

• Indentations and whitespace to format code

12.9 Demonstrate refactoring techniques to reduce repetitious code
and improve maintainability

• Methods/Functions to include blocks of code that can be
reused

• Call/Access these methods for code reusability

12.10 Demonstrate the use of parameters to pass data into program
modules

• Parameters
• Method call
• Datatype of parameters
• Arguments data type in module definition

12.11 Demonstrate the use of return values from modules • The module processes data/parameters and should return
data/output

• Use of return statements
• How to catch the return values and use them further
• Datatype of returning value to match exactly with return data

type in the module definition

STANDARD 13.0 TEST AND DEBUG TO VERIFY PROGRAM OPERATION

13.1 Identify errors in program modules • Rectify syntax errors while writing the program
• IDEs that highlight/suggest these errors

13.1 Identify boundary cases and generate appropriate test data • Limits (upper and lower) for various data/variables
• Test cases to address these limits

Page 7 of 11

13.3 Perform integration testing including tests within a program to
protect execution from bad input or other run-time errors

• Test groups of code to avoid errors
• Unit vs Integration testing strategies

13.4 Categorize, identify, and correct errors in code, including syntax,
semantic, logic, and runtime

• Errors in code
• Techniques for debug errors

13.5 Perform different methods of debugging (e.g. hand-trace code or
real time debugging tools)

• Debugging techniques (i.e., interactive, print, remote, etc.)
• Hand trace code or use a real time debugging tool (i.e., EMPL,

etc.)

STANDARD 17.0 USE AND UPDATE DATA STORAGE AND MANAGEMENT

17.1 Input/output data from a sequential file or database (DB) • Database (DB) management and storage
• Basics of procedural languages (i.e., PL, SQL, etc.)
• Access and modify data in a DB file

17.2 Demonstrate creating, reading, updating, and dropping a database • Simple database
• Duplicate/Incorrect entries

17.3 Demonstrate the proper use of SQL database applications that
work with different languages (e.g., MongoDB, Microsoft Access,
Oracle Databases, and Code.org - App Lab)

• SQL applications (i.e., MongoDB, Microsoft Access, Oracle
Database, Code.org - App Lab, etc.)

STANDARD 19.0 EMPLOY RUN TIME AND ERROR HANDLING TECHNIQUES

19.1 Identify run time errors • Runtime errors vs Syntax errors
• Invalid input

19.2 Describe error handling strategies • Response and recovery procedure
• Cause/Source of the runtime error from its name
• Source of the error, identify and fixing strategies for the line of

code/module responsible

19.3 Handle unexpected return values • Employ Conditional checks/boundaries

19.4 Handle (catch) runtime errors and take appropriate action • Appropriate error message for unexpected returns values
• Alternative steps with try- catch-handle blocks
• Susceptible module within the try block

19.5 Throw standard exception classes • Standard exceptions that occur at runtime
• Standard exception handling classes

Page 8 of 11

19.6 Develop and throw custom exception classes • User defined exception handling class
• Custom exception handling program

Domain 3: Computer Principles
Instructional Time: 5-10%
STANDARD 1.0 APPLY PROBLEM-SOLVING AND CRITICAL THINKING SKILLS

1.1 Explain objectives and outcomes for a task • Problem objectives and the solution(s) required

1.2 Explain the process of decomposing a large programming problem
into smaller, more manageable procedures

• Divide and conquer approach of problem solving
• Independent modules of the problem solution (Agile

methodology)

1.3 Explain ”visualizing” as a problem-solving technique prior to writing
code

• Backwards planning technique
• Pseudo-code

1.4 Describe problem-solving and troubleshooting strategies applicable
to software development

• Problem debugging, rigorous test cases, user acceptance
testing

STANDARD 2.0 RECOGNIZE SECURITY ISSUES

2.1 Identify common computer threats (e.g., viruses, phishing,
suspicious email, social engineering, spoofing, identity theft, and
spamming)

• Types of computer threats
• Types of malwares (e.g., worms, viruses, Trojan horses,

spamming, and identity theft)
• Protection against the malwares
• Cyber Safety

2.2 Describe potential vulnerabilities in software (e.g., OWASP’s Top
10)

• Open Web Application Security Project (OWASP) to identify
web vulnerability

• Scripting, authentication, and injections as vulnerabilities in
software

2.3 Identify procedures to maintain data integrity and security (e.g., lock
the screen, delete unrecognized emails, use trustworthy thumb drives,
and use approved software)

• Personal safety precautions/Best practices (i.e., password
protected systems, application, etc.)

• End user computer security risks

2.4 Explain best practices to maintain integrity and security in software
development (e.g., encryption, hashing, and digital signatures)

• Integrity and security in software
• Encryption/Decryption

Page 9 of 11

• Limited user access group and use of encryption
algorithms/keys (i.e., RSA, etc.)

2.5 Describe methods for sanitizing user input to prevent issues (e.g.,
buffer overflows and SQL injection)

• Error handling techniques (i.e., try- catch- blocks, etc.)
• Checks/Conditions to avoid runtime errors due to invalid user

input
• Buffer overflows

2.6 Explain the CIA (confidentiality, integrity, and availability) triad • Model to guide policies of security information
• Role each element plays in the security plan development

process

2.7 Explain how Software defects relate to software security (e.g.,
buffer overflows and cross-site scripting)

• Phishing/Untrusted scripts from trusted sources
• Buffer overflows and cross-site scripting

STANDARD 3.0 EXAMINE LEGAL AND ETHICAL ISSUES RELATED TO INFORMATION TECHNOLOGY

3.1 Explore intellectual property rights including software licensing and
software duplication [e.g., Digital Millennium Copyright Act (DMCA),
software licensing, and software duplication]

• Copyrights and citation standards and regulations
• Creative commons and other organizations that issue

copyright licenses

3.2 Compare and contrast open source and proprietary systems in
relations to legal and ethical issues (e.g., data pricing, use of public and
private networks, social networking, industry-related data, and data
piracy)

• Fair use doctrine
• Digital information literacy and citizenship
• Royalty fee, protection of author’s work

3.3 Identify issues and regulations affecting computers, other devices,
the internet, and information privacy (e.g., HIPAA, COPPA, CISPA,
FERPA, PCI, GDPR, and data brokers)

• Federal regulations vs Personal privacy online and devices

Domain 4: Web Design
Instructional Time: 5-10%
STANDARD 9.0 IDENTIFY INTERNET PROTOCOLS AND OPERATIONS

9.1 Explain cloud-based computing and content delivery networks
(CDN)

• Cloud-based computing
• Applications for use
• Cookies and cache in the settings
• CDN caches/data locally

Page 10 of 11

9.2 Identify the components and functions of the internet (e.g., HTTP,
HTTPS, FTP, IP addresses, and IMAP)

• Basic internet terminology
• OSI model
• Layers of API and frameworks
• Secure vs Insecure browsing

9.3 Identify services run by web servers [e.g., scripting languages
(client and server-side scripting), databases, and media]

• Basic knowledge of CSS and JavaScript
• Front-end vs Back-end scripting

9.4 Identify performance issues (e.g., bandwidth, internet connection
types, pages loading slowly, and resolution and size graphics)

• Latency vs Bandwidth with internet connectivity
• Embedded graphics issues (JPG, PNG, GIF) with

connection/speed
• Browser options

9.5 Differentiate among shared hosting, dedicated server, and virtual
private server (VPS)

• DSL/SDSL, VPS, VDSL, VPS
• Shared vs Dedicated servers (pros and cons)

9.6 Identify Internet of Things (IoT) and common communication
interfaces (e.g., Bluetooth, NFC, Wi-Fi, and LTE)

• IoT in everyday life
• Types of IoT connections
• Security concerns of IoT
• Communication interfaces (i.e., Bluetooth, Wi-Fi, etc.)

STANDARD 10.0 APPLY CLIENT-SIDE INTERNET SOFTWARE

10.1 Identify key components and functions of internet and web
specialty browsers

• Internet
• Basic and specialty browses (i.e., Chrome, Safari, Firefox,

Maxthon, etc.)

10.2 Use client collaboration sources/platforms (e.g., GitHub, Google
Drive, Dropbox, JSFiddle, and browser developer tools)

• Basic collaboration platforms
• Safety concerns

10.3 Analyze remote computing tools and services and their application • VPNs
• Remote application tools [i.e., OfficeSuite/Google Suite

(docs/forms/sheets), Adobe Creative Suite, etc.]

STANDARD 16.0 APPLY USER DESIGN PRINCIPLES TO INCLUDE WEBSITES AND APPLICATIONS

16.1 Apply W3C standards and style conventions • W3C
• Standards and style conventions /Web development

16.2 Construct Web pages and applications that are compliant with
ADA and sections 504 and 508 standards

• Create and develop web pages using W3C conventions
• ADA, Section 504 and 508 standards

Page 11 of 11

• ADA, Section 504 and 508 requirements to web pages

16.3 Explain the concept of responsive design and applications • Optimal end user experience on web page through responsive
design

• CSS to create responsive design for various browser/device
compatibility

• Industry application tools available (i.e., Bootstrap, Wirefy,
etc.)

16.4 Employ graphic methods to create images at specified locations • Method/Functions to render/Reposition an image

16.5 Choose correct graphical user interface (GUI) objects for input and
output of data to the GUI (e.g., text boxes, labels, radio buttons, check
boxes, dropdowns, and list boxes)

• Text boxes, labels, radio buttons, check buttons, dropdowns,
list boxes in the GUI interface

